Part Number Hot Search : 
2N304 9119T PHU78NQ A1030 NTD6416 JC107 11001 AOD454
Product Description
Full Text Search
 

To Download MRF134 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SEMICONDUCTOR TECHNICAL DATA
Order this document by MRF134/D
The RF MOSFET Line
RF Power Field-Effect Transistor
N-Channel Enhancement-Mode
. . . designed for wideband large-signal amplifier and oscillator applications up to 400 MHz range. * Guaranteed 28 Volt, 150 MHz Performance Output Power = 5.0 Watts Minimum Gain = 11 dB Efficiency -- 55% (Typical) * Small-Signal and Large-Signal Characterization * Typical Performance at 400 MHz, 28 Vdc, 5.0 W Output = 10.6 dB Gain * 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR * Low Noise Figure -- 2.0 dB (Typ) at 200 mA, 150 MHz * Excellent Thermal Stability, Ideally Suited For Class A Operation
D
MRF134
5.0 W, to 400 MHz N-CHANNEL MOS BROADBAND RF POWER FET
G S
CASE 211-07, STYLE 2
MAXIMUM RATINGS
Rating Drain-Source Voltage Drain-Gate Voltage (RGS = 1.0 M) Gate-Source Voltage Drain Current -- Continuous Total Device Dissipation @ TC = 25C Derate above 25C Storage Temperature Range Symbol VDSS VDGR VGS ID PD Tstg Value 65 65 40 0.9 17.5 0.1 -65 to +150 Unit Vdc Vdc Vdc Adc Watts W/C C
THERMAL CHARACTERISTICS
Rating Thermal Resistance, Junction to Case Symbol RJC Value 10 Unit C/W
Handling and Packaging -- MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
REV 6
1
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Drain-Source Breakdown Voltage (VGS = 0, ID = 5.0 mA) Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) Gate-Source Leakage Current (VGS = 20 V, VDS = 0) V(BR)DSS IDSS IGSS 65 -- -- -- -- -- -- 1.0 1.0 Vdc mAdc Adc
ON CHARACTERISTICS
Gate Threshold Voltage (ID = 10 mA, VDS = 10 V) Forward Transconductance (VDS = 10 V, ID = 100 mA) VGS(th) gfs 1.0 80 3.5 110 6.0 -- Vdc mmhos
DYNAMIC CHARACTERISTICS
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss Coss Crss -- -- -- 7.0 9.7 2.3 -- -- -- pF pF pF
FUNCTIONAL CHARACTERISTICS
Noise Figure (VDS = 28 Vdc, ID = 200 mA, f = 150 MHz) Common Source Power Gain (VDD = 28 Vdc, Pout = 5.0 W, IDQ = 50 mA) f = 150 MHz (Fig. 1) f = 400 MHz (Fig. 14) Drain Efficiency (Fig. 1) (VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA) Electrical Ruggedness (Fig. 1) (VDD = 28 Vdc, Pout = 5.0 W, f = 150 MHz, IDQ = 50 mA, VSWR 30:1 at all Phase Angles) No Degradation in Output Power NF Gps 11 -- 50 14 10.6 55 -- -- -- % -- 2.0 -- dB dB
R3* D1 R2 C5 C6 R1 L1 RF INPUT C1 C7
R4 C8 L3 R5 + C10 C9
L4 + C11 C12 VDD = 28 V
C4 L2 DUT C3
RF OUTPUT
C2 *Bias Adjust
C1, C4 -- Arco 406, 15-115 pF C2 -- Arco 403, 3.0-35 pF C3 -- Arco 402, 1.5-20 pF C5, C6, C7, C8, C12 -- 0.1 F Erie Redcap C9 -- 10 F, 50 V C10, C11 -- 680 pF Feedthru D1 -- 1N5925A Motorola Zener L1 -- 3 Turns, 0.310 ID, #18 AWG Enamel, 0.2 Long L2 -- 3-1/2 Turns, 0.310 ID, #18 AWG Enamel, 0.25 Long
L3 -- 20 Turns, #20 AWG Enamel Wound on R5 L4 -- Ferroxcube VK-200 -- 19/4B R1 -- 68 , 1.0 W Thin Film R2 -- 10 k, 1/4 W R3 -- 10 Turns, 10 k Beckman Instruments 8108 R4 -- 1.8 k, 1/2 W R5 -- 1.0 M, 2.0 W Carbon Board -- G10, 62 mils
Figure 1. 150 MHz Test Circuit
REV 6
2
10 Pout , OUTPUT POWER (WATTS) 8 6 4 2 0 Pout , OUTPUT POWER (WATTS) f = 100 MHz 150 225 400
5 4 3 2 1 0
f = 100 MHz 150 225 400
VDD = 28 V IDQ = 50 mA 0 200 400 600 Pin, INPUT POWER (MILLWATTS) 800 1000
VDD = 13.5 V IDQ = 50 mA 0 200 400 600 Pin, INPUT POWER (MILLWATTS) 800 1000
Figure 2. Output Power versus Input Power
Figure 3. Output Power versus Input Power
8 Pout , OUTPUT POWER (WATTS)
Pin = 600 mW
8 Pout , OUTPUT POWER (WATTS) 300 mW
Pin = 800 mW 400 mW
6 150 mW 4
6
4
200 mW
2
IDQ = 50 mA f = 100 MHz
2
IDQ = 50 mA f = 150 MHz
0 12
14
16
18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS)
26
28
0 12
14
16
18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS)
26
28
Figure 4. Output Power versus Supply Voltage
Figure 5. Output Power versus Supply Voltage
8 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) Pin = 800 mW 6 400 mW 4 200 mW 2 IDQ = 50 mA f = 225 MHz 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28
8 Pin = 800 mW
6
IDQ = 50 mA f = 400 MHz
400 mW 4 200 mW 2
0 12
14
16
18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS)
26
28
Figure 6. Output Power versus Supply Voltage
Figure 7. Output Power versus Supply Voltage
REV 6
3
6 Pout , OUTPUT POWER (WATTS) 5 4 3 2 1 0 -2 -1 TYPICAL DEVICE SHOWN, VGS(th) = 3.5 V 1 2 3 0 VGS, GATE-SOURCE VOLTAGE (VOLTS) 4 5 I D, DRAIN CURRENT (MILLAMPS) VDD = 28 V IDQ = 50 mA Pin = CONSTANT
500 400 300 200 100 0 TYPICAL DEVICE SHOWN, VGS(th) = 3.5 V 0 1 2 3 4 5 6 VGS, GATE-SOURCE VOLTAGE (VOLTS) 7 8 VDS = 10 V
f = 400 MHz 150 MHz
Figure 8. Output Power versus Gate Voltage
Figure 9. Drain Current versus Gate Voltage (Transfer Characteristics)
50
VGS, GATE SOURCE VOLTAGE (NORMALIZED)
1.02 1 0.98 0.96 0.94 0.92 0.9 -25 0
IDQ = 200 mA 100 mA
G MAX, MAXIMUM AVAILABLE GAIN (dB)
VDD = 28 V
40 30 20 10 0 VDS = 28 V ID = 100 mAdc 1 10 100 f, FREQUENCY (MHz) 1000 |S21|2
GMAX =
(1 - |S11|2) (1 - |S22|2)
50 mA
25 50 75 100 TC, CASE TEMPERATURE (C)
125
150
Figure 10. Gate-Source Voltage versus Case Temperature
Figure 11. Maximum Available Gain versus Frequency
28 24 C, CAPACITANCE (pF) 20 16 12 8 4 0 0 4
I D, DRAIN CURRENT (AMPS)
VGS = 0 V f = 1 MHz
1 0.7 0.5 0.3 0.2 0.1 0.07 0.05 0.03 0.02 0.01 1 2 5 10 20 50 70 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) 100 TC = 25C
Coss Ciss Crss 8 12 16 20 VDS, DRAIN-SOURCE VOLTAGE (VOLTS) 24 28
Figure 12. Capacitance versus Voltage
Figure 13. Maximum Rated Forward Biased Safe Operating Area
REV 6
4
R3* D1 R2 C7 C8
R4 C9 L1 C10
C11 + -
L2 C12 C13 VDD = 28 V C14
Z4 R1
Z5
C6 RF OUTPUT
RF INPUT
C1
Z1 C2
Z2
Z3 C3 DUT C4 C5
*Bias Adjust
C1, C6 -- 270 pF, ATC 100 mils C2, C3, C4, C5 -- 0-20 pF Johanson C7, C9, C10, C14 -- 0.1 F Erie Redcap, 50 V C8 -- 0.001 F C11 -- 10 F, 50 V C12, C13 -- 680 pF Feedthru D1 -- 1N5925A Motorola Zener L1 -- 6 Turns, 1/4 ID, #20 AWG Enamel L2 -- Ferroxcube VK-200 -- 19/4B R1 -- 68 , 1.0 W Thin Film
R2 -- 10 k, 1/4 W R3 -- 10 Turns, 10 k Beckman Instruments 8108 R4 -- 1.8 k, 1/2 W Z1 -- 1.4 x 0.166 Microstrip Z2 -- 1.1 x 0.166 Microstrip Z3 -- 0.95 x 0.166 Microstrip Z4 -- 2.2 x 0.166 Microstrip Z5 -- 0.85 x 0.166 Microstrip Board -- Glass Teflon, 62 mils
Figure 14. 400 MHz Test Circuit
400 VDD = 28 V, IDQ = 50 mA, Pout = 5.0 W 225 Zin{ 150 400 225 150 f = 100 MHz ZOL* f = 100 MHz Zo = 50 f MHz 100 150 225 400 Zin{ Ohms 21.2 - j25.4 14.6 - j22.1 9.1 - j18.8 6.4 - j10.8 ZOL* Ohms 20.1 - j46.7 19.2 - j38.2 17.5 - j33.5 16.9 - j26.9
{68 Shunt Resistor Gate-to-Ground ZOL* = Conjugate of the optimum load impedance ZOL* = into which the device output operates at a ZOL* = given output power, voltage and frequency.
Figure 15. Large-Signal Series Equivalent Input/Output Impedances, Zin, ZOL*
REV 6
5
f (MHz) 1.0 2.0 5.0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600
S11 |S11| 0.989 0.989 0.988 0.985 0.977 0.965 0.950 0.931 0.912 0.892 0.874 0.855 0.833 0.827 0.821 0.814 0.808 0.802 0.788 0.774 0.763 0.751 0.740 0.719 0.704 0.687 0.673 0.668 0.669 0.662 0.654 0.650 0.638 0.614 0.641 0.638 0.633 0.628 0.625 -1.0 -2.0 -5.0 -10 -20 -30 -39 -47 -53 -58 -62 -66 -70 -73 -76 -79 -82 -86 -89 -92 -94 -97 -100 -104 -108 -113 -117 -120 -123 -125 -127 -129 -131 -132 -133 -135 -137 -138 -140 |S21| 11.27 11.27 11.26 11.20 10.99 10.66 10.25 9.777 9.359 8.960 8.583 8.190 7.808 7.661 7.515 7.368 7.222 7.075 6.810 6.540 6.220 5.903 5.784 5.334 4.904 4.551 4.219 3.978 3.737 3.519 3.325 3.170 3.048 2.898 2.833 2.709 2.574 2.481 2.408
S21 179 179 176 173 166 159 153 147 142 138 135 131 128 125 122 119 116 114 112 110 108 106 104 100 97 92 89 86 83 80 77 75 72 71 68 66 64 62 60 |S12| 0.0014 0.0028 0.0069 0.014 0.027 0.039 0.051 0.060 0.069 0.077 0.085 0.091 0.096 0.101 0.107 0.113 0.119 0.125 0.127 0.128 0.130 0.132 0.134 0.136 0.139 0.141 0.141 0.142 0.142 0.143 0.142 0.140 0.141 0.136 0.136 0.135 0.133 0.131 0.129
S12 89 89 86 83 76 69 63 57 53 49 46 43 40 38 36 34 32 31 30 28 26 24 23 20 19 16 14 12 10 9.0 8.0 7.0 6.0 6.0 5.0 5.0 4.0 5.0 5.0 |S22| 0.954 0.954 0.954 0.951 0.938 0.918 0.895 0.867 0.846 0.828 0.815 0.801 0.785 0.784 0.784 0.784 0.783 0.783 0.780 0.774 0.762 0.760 0.758 0.757 0.758 0.757 0.750 0.757 0.766 0.768 0.772 0.772 0.783 0.786 0.795 0.801 0.802 0.805 0.814
S22 -1.0 -2.0 -4.0 -9.0 -18 -26 -34 -42 -49 -56 -62 -68 -74 -77 -82 -85 -88 -90 -92 -94 -98 -100 -103 -107 -110 -114 -117 -120 -121 -123 -124 -125 -125 -126 -127 -127 -128 -128 -128 (continued)
The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measured on the MRF134 device alone with no external components.
Table 1. Common Source Scattering Parameters VDS = 28 V, ID = 100 mA
REV 6
6
f (MHz) 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1000
S11 |S11| 0.619 0.617 0.618 0.619 0.618 0.614 0.609 0.562 0.587 0.593 0.597 0.598 0.592 0.588 0.586 0.590 -142 -144 -146 -147 -150 -152 -154 -155 -156 -158 -160 -162 -164 -166 -168 -171 |S21| 2.334 2.259 2.192 2.124 2.061 1.983 1.908 1.877 1.869 1.794 1.749 1.700 1.641 1.590 1.572 1.551
S21 58 56 55 53 51 49 48 49 46 44 43 41 40 39 39 37 |S12| 0.128 0.125 0.123 0.122 0.120 0.118 0.119 0.118 0.119 0.118 0.119 0.118 0.115 0.112 0.108 0.107
S12 5.0 6.0 7.0 8.0 9.0 11 13 15 16 18 18 18 18 20 23 28 |S22| 0.818 0.824 0.834 0.851 0.859 0.857 0.865 0.872 0.869 0.875 0.881 0.889 0.888 0.877 0.864 0.863
S22 -129 -130 -130 -131 -132 -133 -133 -133 -134 -135 -135 -136 -138 -138 -137 -137
The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measurd on the MRF134 device alone with no external components.
Table 1. Common Source Scattering Parameters (continued) VDS = 28 V, ID = 100 mA
REV 6
7
+j50 +j25 +j100 +j150 +j10 +j250 +j500 0
10 25 50 100 150 250 500
+90 +120 +60 S12 100 150 f = 1000 MHz 200 300 500
+150 50 180
.20 .18 .16 .14 .12 .10 .08 .06 .04 .02
+30
f = 1000 MHz
0
-j500 -j250 -30
-j10
500 400 300 -j25
200
150 100
50 -j100
-j150
-150
-120
-60 -90
-j50
Figure 16. S11, Input Reflection Coefficient versus Frequency VDS = 28 V ID = 100 mA
Figure 17. S12, Reverse Transmission Coefficient versus Frequency VDS = 28 V ID = 100 mA
+90 +120 100 150 +150 f = 50 MHz S21 180
.10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0
+j50 +60 +j25 +30 +j100 +j150 +j10 +j250 +j500 0 0
10 25 50 100 150 250 500
200 300 400 500 1000
-j500 -150 -30 -j10 -j250 f = 1000 MHz 500 -120 -60 -90 -j25 S22 80 50 -j100 -j150
300 200 150 100 -j50
Figure 18. S21, Forward Transmission Coefficient versus Frequency VDS = 28 V ID = 100 mA
Figure 19. S22, Output Reflection Coefficient versus Frequency VDS = 28 V ID = 100 mA
REV 6
8
DESIGN CONSIDERATIONS The MRF134 is a RF power N-Channel enhancement mode field-effect transistor (FET) designed especially for VHF power amplifier and oscillator applications. M/A-COM RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V-groove vertical power FETs. M/A-COM Application Note AN-211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. DC BIAS The MRF134 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 9 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF134 was characterized at IDQ = 50 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system.
GAIN CONTROL Power output of the MRF134 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 8.)
AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF134. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs. RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF134, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. The MRF134 was characterized with a 68-ohm input shunt loading resistor. Two port parameter stability analysis with the MRF134 s-parameters provides a useful-tool for selection of loading or feedback circuitry to assure stable operation. See MA-COM Application Note AN215A for a discussion of two port network theory and stability. Input resistive loading is not feasible in low noise applications. The MRF134 noise figure data was generated in a circuit with drain loading and a low loss input network.
REV 6
9
PACKAGE DIMENSIONS
A U M Q
1 4
M
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E H J K M Q R S U STYLE 2: PIN 1. 2. 3. 4. SOURCE GATE SOURCE DRAIN INCHES MIN MAX 0.960 0.990 0.370 0.390 0.229 0.281 0.215 0.235 0.085 0.105 0.150 0.108 0.004 0.006 0.395 0.405 40 _ 50 _ 0.113 0.130 0.245 0.255 0.790 0.810 0.720 0.730 MILLIMETERS MIN MAX 24.39 25.14 9.40 9.90 5.82 7.13 5.47 5.96 2.16 2.66 3.81 4.57 0.11 0.15 10.04 10.28 40 _ 50 _ 2.88 3.30 6.23 6.47 20.07 20.57 18.29 18.54
R
2 3
B
S
D K
J H C E
SEATING PLANE
CASE 211-07 ISSUE N
Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 6
10


▲Up To Search▲   

 
Price & Availability of MRF134

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X